

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: BACHELOR OF SCIENCE							
QUALIFICATION CODE: 07BAMS	LEVEL: 5						
COURSE CODE: IAS501S	COURSE NAME: INTRODUCTION TO APPLIED STATISTICS						
SESSION: JULY 2022	PAPER: THEORY						
DURATION: 3 HOURS	MARKS: 100						

SUPPLEMENTARY / SECOND OPPORTUNITY EXAMINATION QUESTION PAPER								
EXAMINER(S)	MR. AJ. ROUX							
MODERATOR:	DR. D. NTERAMPEBA							

THIS QUESTION PAPER CONSISTS OF 5 PAGES

(Excluding Statistical Table and Graph Paper)

INSTRUCTIONS

- 1. Answer ALL the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations.
- 3. All written work must be done in blue or black ink.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

ATTACHMENTS

- 1. Statistical Tables (Z-Tables)
 - 2. Graph Paper x 3

QUESTION 1 [30]

Write down ONLY the letter corresponding to your choice next to the question number.

1)	A sample is				(2)
	a) An experiment in	the population	b) A subset of	the population	
	c) A variable in the p	opulation	d) An outcome	of the population	
2)	A parameter refers t	0	*		(2)
	a) Calculation made	from the popula	tion		
	b) A measurement th	nat is made from	the population •		
	c) A value observed i	n the experimer	nt		
	d) All of the above				
3)	Weight is a	variable			(2)
		b) Discrete	c) Ordinal	d) Interval	1-7
4)	Researchers do samp	oling because of	all of the following rea	sons except	(2)
	a) Reduce cost		b) Reduce time		
	c) Sampling is interesti	ng d) Easy to n	nanage due to manageab	le logistics requireme	nts
5)	If the median is greathed the data's distribution		de for a data set, what	can you conclude ab	out (2)
			cal c) negatively sk	ewed d) none	(-)
6)			ethnicity be classified		(2)
7)	a) nominal, I What percent of data	o) ordinal, a is greater than	c) interval, the third quartile	d) ratio	(2)
) 50%	c) 75%	d) 100%	
8)		an the mode for	a data set, what can yo	ou conclude about t	he
	data's distribution? a) positively skewed	b) symmetrica	l c) negatively skew	ed d) none of the	(2)
			, ,	ed ay none or the	
9)	What is the median of a) 3.4 b			one of these	(2)
	-				

10)	The mean of a data set is equal to zero. We this data set must be true? a) none of the other statements is necessary b) 50% of the values in the data set are necessary to the distribution of the values in the data d) the median of the data set must also be e) each value in the dataset must be equal	arily true gative and 50% are positive a set is positively skewed a zero	rding (2)
11)	The following data set is the weight gains(k		
11.1)	specified amount of time: 9 , 16 Calculate the mean of this data.	, 21 , 11 , 18	(2)
11.1/		d) none of these	(2)
11.2)	Find the median of this data.		(2)
44.51		d) none of these	(0)
11.3)	a) 19.60 b) 26.50	c) 24.5 d) none of these	(2)
12) Fo contin	r each of the following random variables, incuous	dicate the data type discrete or	
12.1)	The weight of a new born baby		(1)
12.2)	The number of stones in a basket		(1)
12.3)	The distance I walk to campus.		(1)
12.4)	The number of assignments submitted by r	mail	(1)
QUEST	TON 2 [30]		
2.1)	The average distance domestic workers wa mean μ = 2860 meters and standard deviat domestic workers, a sample of 50 workers	ion σ = 440 meters. From a populatio	
2.1.1)	What is the probability that the sample me meters?	an will be between 2740 and 2900	(5)
2.1.2)	What is the probability that the sample me	an will be larger than 3000 meters?	(5)
2.2)	Surgeons at a state hospital can do on aver probability that on any given working day:	age 6 operations per day. What is the	9
2.2.1)	No operations can be done		(5) (5)

2.3) Using the below table for our class to answer the following questions.

	BLACK	BLOND	BROWN
FEMALE	2	5	11
MALE	3	0	3

Write down ONLY the letter corresponding to your choice next to the question number.

2.3.1) Find the probability of selecting a person with brown hair. (2)

a) 0.75 b) 0.62 c) 0.58 d) none of these

2.3.2) Find the probability of selecting a person who is a female. (2) a) 0.58 b) 0.75 c) 0.62 d) none of these

a) 0.58 b) 0.75 c) 0.62 d) none of these 2.3.3) Find the probability of selecting a male student with black hair. (2)

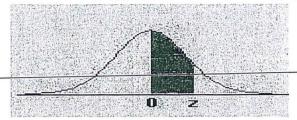
a) 0.125 b) 0.375 c) 0.875 d) none of these

2.3.4) Find the probability of selecting a female student or a student with brown hair. (2) a) 0.125 b) 0.375 c) 0.875 d) none of these

2.3.5) Find the probability of selecting a person with brown hair given that the person is female

is female (2) a)0.611 b)0.422 c)0.525 d) none of these

QUESTION 3 [20]


The monthly rentals paid by 30 flat tenants (in N\$) are

189	156	250	265	195	300
350	315	290	285	165	178
415	280	212	580	395	360
285	225	230	450	185	193
580	248	460	250	520	300

- 3.1) Construct a frequency distribution of the rents paid by tenants, starting the first interval at N\$ 149.5, and maintaining a constant width of N\$ 100-00.(6)
- 3.2) In the frequency distribution, include a column for the cumulative "less-than" frequencies.

3.3)	Use your fre	equency d	listributio	ns to dra	w the foll	owing gr	aphs:		
		Histogram ımulative		n" ogive/	polygon.				(4 (4
3.4)	From your	graphs dr	awn in 5.	3 , read-o	off the foll	· lowing :			
	3.4.1) The 3.4.2) The								(2 (2
QUES:	TION 4 (20	<u>))</u>							
A com	npany's sale	s for the y	ears 200	1 to 2009	were as	follows: (x N\$ 10 (000)	
Year	2011	2012	2013	2014	2015	2016	2017	2018	2019
Sales	324	296	310	305	295	347	348	364	370
4.1)	Construct	a scatter	plot						(5
4.2) sa	Derive, by les of the co								or the (11
4.3)	Compute	trend valu	es for the	e years 20	009 and 2	022			(4
,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	VVVVVVVVV	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· · · · · · · · · · · · · · · · · · ·	^~~~~

APPENDIX C: The Standard Normal Distribution

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0:4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

Standard Normal Distribution Tables

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.9	.00005	.00005	.00004	.00004	.00004	.00004	.00004	.00004	.00003	.0000
-3.8	.00007	.00007	.00007	.00006	.00006	.00006	.00006	.00005	.00005	.0000
-3.7	.00011	.00010	.00010	.00010	.00009	.00009	.00008	.00008	.00008	.0000
-3.6	.00016	.00015	.00015	.00014	.00014	.00013	.00013	.00012	.00012	.0001
-3.5	.00023	.00022	.00022	.00021	.00020	.00019	.00019	.00018	.00017	.0001
-3.4	.00034	.00032	.00031	.00030	.00029	.00028	.00027	.00026	.00025	.0002
-3.3	.00048	.00047	.00045	.00043	.00042	.00040	.00039	.00038	.00036	.0003
-3.2	.00069	.00066	.00064	.00062	.00060	.00058	.00056	.00054	.00052	.0005
-3.1	.00097	.00094	.00090	.00087	.00084	.00082	.00079	.00076	.00074	.0007
-3.0	.00135	.00131	.00126	.00122	.00118	.00114	.00111	.00107	.00104	.0010
-2.9	.00187	.00181	.00175	.00169	.00164	.00159	.00154	.00149	.00144	.0013
-2.8	.00256	.00248	.00240	.00233	.00226	.00219	.00212	.00205	.00199	.0019
-2.7	.00347	.00336	.00326	.00317	.00307	.00298	.00289	.00280	.00272	.0026
-2.6	.00466	.00453	.00440	.00427	.00415	.00402	.00391	.00379	.00368	.0035
-2.5	.00621	.00604	.00587	.00570	.00554	.00539	.00523	.00508	.00494	.0048
-2.4	.00820	.00798	.00776	.00755	.00734	.00714	.00695	.00676	.00657	.0063
-2.3	.01072	.01044	.01017	.00990	.00964	.00939	.00914	.00889	.00866	.0084
-2.2	.01390	.01355	.01321	.01287	.01255	.01222	.01191	.01160	.01130	.0110
-2.1	.01786	.01743	.01700	.01659	.01618	.01578	.01539	.01500	.01463	.0142
-2.0	.02275	.02222	.02169	.02118	.02068	.02018	.01970	.01923	.01876	.0183
-1.9	.02872	.02807	.02743	.02680	.02619	.02559	.02500	.02442	.02385	.0233
-1.8	.03593	.03515	.03438	.03362	.03288	.03216	.03144	.03074	.03005	.0293
-1.7	.04457	.04363	.04272	.04182	.04093	.04006	.03920	.03836	.03754	.0367
-1.6	.05480	.05370	.05262	.05155	.05050	.04947	.04846	.04746	.04648	.0455
-1.5	.06681	.06552	.06426	.06301	.06178	.06057	.05938	.05821	.05705	.0559
-1.4	.08076	.07927	.07780	.07636	.07493	.07353	.07215	.07078	.06944	.0681
-1.3	.09680	.09510	.09342	.09176	.09012	.08851	.08691	.08534	.08379	.0822
-1.2	.11507	.11314	.11123	.10935	.10749	.10565	.10383	.10204	.10027	.0985
-1.1	.13567	.13350	.13136	.12924	.12714	.12507	.12302	.12100	.11900	.1170
-1.0	.15866	.15625	.15386	.15151	.14917	.14686	.14457	.14231	.14007	.1378
-0.9	.18406	.18141	.17879	.17619	.17361	.17106	.16853	.16602	.16354	.1610
-0.8	.21186	.20897	.20611	.20327	.20045	.19766	.19489	.19215	.18943	.1867
-0.7	.24196	.23885	.23576	.23270	.22965	.22663	.22363	.22065	.21770	.2147
-0.6	.27425	.27093	.26763	.26435	.26109	.25785	.25463	.25143	.24825	.2451
-0.5	.30854	.30503	.30153	.29806	.29460	.29116	.28774	.28434	.28096	.2776
-0.4	.34458	.34090	.33724	.33360	.32997	.32636	.32276	.31918	.31561	.3120
-0.3	.38209	.37828	.37448	.37070	.36693	.36317	.35942	.35569	.35197	.3482
-0.2	.42074	.41683	.41294	.40905	.40517	.40129	.39743	.39358	.38974	.3859
-0.1	.46017	.45620	.45224	.44828	.44433	.44038	.43644	.43251	.42858	.4246
-0.0	.50000	.49601	.49202	.48803	.48405	.48006	.47608	.47210	.46812	.4641

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

	Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
	0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
	0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535
-	0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
	0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
	0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
	0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
	0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
	0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524
	0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327
	0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
	1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.86214
	1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298
	1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
	1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774
	1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189
	1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408
	1.6	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449
	1.7	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.96327
	1.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.97062
	1.9	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670
	2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169
	2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.98574
	2.2	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.98840	.98870	.98899
	2.3	.98928	.98956	.98983	.99010	.99036	.99061	.99086	.99111	.99134	.99158
	2.4	.99180	.99202	.99224	.99245	.99266	.99286	.99305	.99324	.99343	.99361
	2.5	.99379	.99396	.99413	.99430	.99446	.99461	.99477	.99492	.99506	.99520
	2.6	.99534	.99547	.99560	.99573	.99585	.99598	.99609	.99621	.99632	.99643
	2.7	.99653	.99664	.99674	.99683	.99693	.99702	.99711	.99720	.99728	.99736
	2.8	.99744	.99752	.99760	.99767	.99774	.99781	.99788	.99795	.99801	.99807
	2.9	.99813	.99819	.99825	.99831	.99836	.99841	.99846	.99851	.99856	.99861
	3.0	.99865	.99869	.99874	.99878	.99882	99886	.99889	.99893	.99896	.99900
	3.1	.99903	.99906	.99910	.99913	.99916	.99918	.99921	.99924	.99926	.99929
	3.2	.99931	.99934	.99936	.99938	.99940	.99942	.99944	.99946	.99948	.99950
	3.3	.99952	.99953	.99955	.99957	.99958	.99960	.99961	.99962	.99964	.99965
	3.4	.99966	.99968	.99969	.99970	.99971	.99972	.99973	.99974	.99975	.99976
	3.5	.99977	.99978	.99978	.99979	.99980	.99981	.99981	.99982	.99983	.99983
	3.6	.99984	.99985	.99985	.99986	.99986	.99987	.99987	.99988	.99988	.99989
	3.7	.99989	.99990	.99990	.99990	.99991	.99991	.99992	.99992	.99992	.99992
	3.8	.99993	.99993	.99993	.99994	.99994	.99994	.99994	.99995	.99995	.99995
	3.9	.99995	.99995	.99996	.99996	.99996	.99996	.99996	.99996	.99997	.99997